Drug Transport Mechanism of Oral Antidiabetic Nanomedicines

Authors Information
Article Notes and Dates
To Cite : Gundogdu E, Yurdasiper A. Drug Transport Mechanism of Oral Antidiabetic Nanomedicines, Int J Endocrinol Metab. 2014 ;12(1):e8984. doi: 10.5812/ijem.8984.
Copyright: Copyright © 2014, International Journal of Endocrinology and Metabolism. .
Abstract
1. Context
2. Evidence Acquisition
2.1. Nanomedicines and nanoparticles
3. Results
4. Conclusions
Acknowledgements
Footnotes
References
  • 1. Tornio A, Niemi M, Neuvonen PJ, Backman JT. Drug interactions with oral antidiabetic agents: pharmacokinetic mechanisms and clinical implications. Trends Pharmacol Sci. 2012; 33(6): 312-22[DOI][PubMed]
  • 2. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011; 94(3): 311-21[DOI][PubMed]
  • 3. Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes--future perspectives. Int J Pharm. 2013; 440(1): 48-62[DOI][PubMed]
  • 4. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27(5): 1047-53[PubMed]
  • 5. Sabetsky V, Ekblom J. Insulin: a new era for an old hormone. Pharmacol Res. 2010; 61(1): 1-4[DOI][PubMed]
  • 6. Reis CP, Ribeiro AJ, Houng S, Veiga F, Neufeld RJ. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci. 2007; 30(5): 392-7[DOI][PubMed]
  • 7. Bowman K, Leong KW. Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine. 2006; 1(2): 117-28[PubMed]
  • 8. Mukhopadhyay Piyasi, Mishra Roshnara, Rana Dipak, Kundu Patit P. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review. Prog Polym Sci. 2012; 37(11): 1457-1475
  • 9. Petitti DB, Klingensmith GJ, Bell RA, Andrews JS, Dabelea D, Imperatore G, et al. Glycemic control in youth with diabetes: the SEARCH for diabetes in Youth Study. J Pediatr. 2009; 155(5): 668-72 e1-3[DOI][PubMed]
  • 10. Mortensen HB, Robertson KJ, Aanstoot HJ, Danne T, Holl RW, Hougaard P, et al. Insulin management and metabolic control of type 1 diabetes mellitus in childhood and adolescence in 18 countries. Hvidore Study Group on Childhood Diabetes. Diabet Med. 1998; 15(9): 752-9[DOI][PubMed]
  • 11. Arbit E, Kidron M. Oral insulin: the rationale for this approach and current developments. J Diabetes Sci Technol. 2009; 3(3): 562-7[PubMed]
  • 12. Lassmann-Vague V, Raccah D. Alternatives routes of insulin delivery. Diabetes Metab. 2006; 32(5 Pt 2): 513-22[PubMed]
  • 13. Aungst BJ, Rogers NJ, Shefter E. Comparison of nasal, rectal, buccal, sublingual and intramuscular insulin efficacy and the effects of a bile salt absorption promoter. J Pharmacol Exp Ther. 1988; 244(1): 23-7[PubMed]
  • 14. Sonaje K, Lin KJ, Wey SP, Lin CK, Yeh TH, Nguyen HN, et al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-responsive nanoparticles vs. subcutaneous injection. Biomaterials. 2010; 31(26): 6849-58[DOI][PubMed]
  • 15. Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabet Med. 2003; 20(11): 886-98[PubMed]
  • 16. Sonaje K, Chen YJ, Chen HL, Wey SP, Juang JH, Nguyen HN, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials. 2010; 31(12): 3384-94[DOI][PubMed]
  • 17. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012; 64(6): 557-70[DOI][PubMed]
  • 18. Plapied Laurence, Duhem Nicolas, des Rieux Anne, Préat Véronique. Fate of polymeric nanocarriers for oral drug delivery. Current opinion colloid In Sci. 2011; 16(3): 228-237
  • 19. Ramesan RM, Sharma CP. Challenges and advances in nanoparticle-based oral insulin delivery. Expert Rev Med Devices. 2009; 6(6): 665-76[DOI][PubMed]
  • 20. Kawashima Y, Yamamoto H, Takeuchi H, Kuno Y. Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharm Dev Technol. 2000; 5(1): 77-85[DOI][PubMed]
  • 21. Lamprecht Alf, Koenig Petra, Ubrich Nathalie, Maincent Philippe, Neumann Dirk. Low molecular weight heparin nanoparticles: mucoadhesion and behaviour in Caco-2 cells. Nanotechnology. 2006; 17(15): 3673-3680
  • 22. des Rieux A, Pourcelle V, Cani PD, Marchand-Brynaert J, Preat V. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv Drug Deliv Rev. 2013; 65(6): 833-44[DOI][PubMed]
  • 23. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007; 24(8): 1415-26[DOI][PubMed]
  • 24. Chalasani KB, Russell-Jones GJ, Yandrapu SK, Diwan PV, Jain SK. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release. 2007; 117(3): 421-9[DOI][PubMed]
  • 25. Marschutz MK, Caliceti P, Bernkop-Schnurch A. Design and in vivo evaluation of an oral delivery system for insulin. Pharm Res. 2000; 17(12): 1468-74[PubMed]
  • 26. Fasano A, Uzzau S. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest. 1997; 99(6): 1158-64[DOI][PubMed]
  • 27. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009; 26(5): 1025-58[DOI][PubMed]
  • 28. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007; 24(12): 2198-206[DOI][PubMed]
  • 29. Cui FD, Tao AJ, Cun DM, Zhang LQ, Shi K. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J Pharm Sci. 2007; 96(2): 421-7[DOI][PubMed]
  • 30. Sajeesh S, Sharma CP. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery. J Biomed Mater Res B Appl Biomater. 2006; 76(2): 298-305[DOI][PubMed]
  • 31. Jain Shelesh, Saraf Swarnlata. Influence of processing variables and in vitro characterization of glipizide loaded biodegradable nanoparticles. Diabetes Metab Syndrome: Clin Res Rev. 2009; 3(2): 113-117
  • 32. Verma RK, Garg S. Selection of excipients for extended release formulations of glipizide through drug-excipient compatibility testing. J Pharm Biomed Anal. 2005; 38(4): 633-44[DOI][PubMed]
  • 33. Nguyen HN, Wey SP, Juang JH, Sonaje K, Ho YC, Chuang EY, et al. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials. 2011; 32(10): 2673-82[DOI][PubMed]
  • 34. Woitiski CB, Neufeld RJ, Veiga F, Carvalho RA, Figueiredo IV. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur J Pharm Sci. 2010; 41(3-4): 556-63[DOI][PubMed]
  • 35. Rawat MK, Jain A, Singh S. In vivo and cytotoxicity evaluation of repaglinide-loaded binary solid lipid nanoparticles after oral administration to rats. J Pharm Sci. 2011; 100(6): 2406-17[DOI][PubMed]
  • 36. Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods. 2000; 44(1): 301-12[PubMed]
  • 37. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Bioph Res Co. 1991; 175(3): 880-885[DOI]
  • 38. Furuse M, Hirase T, Itoh M, Nagafuchi A. [The transport of vitamin B12 through polarized Occludin: a novel monolayers of Caco-2 cells– integral membrane protein localizing at tight junctions]. Cell Biol. 1990; 123: 1777-1788
  • 39. Gundogdu E, Mangas-Sanjuan V, Gonzalez-Alvarez I, Bermejo M, Karasulu E. In vitro-in situ permeability and dissolution of fexofenadine with kinetic modeling in the presence of sodium dodecyl sulfate. Eur J Drug Metab Pharmacokinet. 2012; 37(1): 65-75[DOI][PubMed]
  • 40. Peppas NA, Kavimandan NJ. Nanoscale analysis of protein and peptide absorption: insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles. Eur J Pharm Sci. 2006; 29(3-4): 183-97[DOI][PubMed]
  • 41. Foss AC, Peppas NA. Investigation of the cytotoxicity and insulin transport of acrylic-based copolymer protein delivery systems in contact with Caco-2 cultures. Eur J Pharm Biopharm. 2004; 57(3): 447-55[DOI][PubMed]
  • 42. Torres-Lugo M, Garcia M, Record R, Peppas NA. Physicochemical behavior and cytotoxic effects of p(methacrylic acid-g-ethylene glycol) nanospheres for oral delivery of proteins. J Control Release. 2002; 80(1-3): 197-205[PubMed]
  • 43. Kendzierski KS, Pansky B, Budd GC, Saffran M. Evidence for biosynthesis of preproinsulin in gut of rat. Endocrine. 2000; 13(3): 353-9[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Cited By:

International Journal of Endocrinology and Metabolism accepts terms & conditions of:

International Committee of Medical Journal Editors (ICMJE) Citedby Linking DOI enabled Crossref iThenticate COPE Cross Check