International Journal of Endocrinology and Metabolism

Published by: Kowsar

Drug Transport Mechanism of Oral Antidiabetic Nanomedicines

Evren Gundogdu 1 , * and Aysu Yurdasiper 2
Authors Information
1 Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Turkey
2 Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
Article information
  • International Journal of Endocrinology and Metabolism: January 01, 2014, 12 (1); e8984
  • Published Online: January 1, 2014
  • Article Type: Review Article
  • Received: November 5, 2012
  • Revised: April 8, 2013
  • Accepted: May 5, 2013
  • DOI: 10.5812/ijem.8984

To Cite: Gundogdu E, Yurdasiper A. Drug Transport Mechanism of Oral Antidiabetic Nanomedicines, Int J Endocrinol Metab. 2014 ; 12(1):e8984. doi: 10.5812/ijem.8984.

Copyright © 2014, Research Institute For Endocrine Sciences and Iran Endocrine Society. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
2.1. Nanomedicines and nanoparticles
3. Results
4. Conclusions
  • 1. Tornio A, Niemi M, Neuvonen PJ, Backman JT. Drug interactions with oral antidiabetic agents: pharmacokinetic mechanisms and clinical implications. Trends Pharmacol Sci. 2012; 33(6): 312-22[DOI][PubMed]
  • 2. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011; 94(3): 311-21[DOI][PubMed]
  • 3. Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes--future perspectives. Int J Pharm. 2013; 440(1): 48-62[DOI][PubMed]
  • 4. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27(5): 1047-53[PubMed]
  • 5. Sabetsky V, Ekblom J. Insulin: a new era for an old hormone. Pharmacol Res. 2010; 61(1): 1-4[DOI][PubMed]
  • 6. Reis CP, Ribeiro AJ, Houng S, Veiga F, Neufeld RJ. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci. 2007; 30(5): 392-7[DOI][PubMed]
  • 7. Bowman K, Leong KW. Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine. 2006; 1(2): 117-28[PubMed]
  • 8. Mukhopadhyay Piyasi, Mishra Roshnara, Rana Dipak, Kundu Patit P. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review. Prog Polym Sci. 2012; 37(11): 1457-1475
  • 9. Petitti DB, Klingensmith GJ, Bell RA, Andrews JS, Dabelea D, Imperatore G, et al. Glycemic control in youth with diabetes: the SEARCH for diabetes in Youth Study. J Pediatr. 2009; 155(5): 668-72 e1-3[DOI][PubMed]
  • 10. Mortensen HB, Robertson KJ, Aanstoot HJ, Danne T, Holl RW, Hougaard P, et al. Insulin management and metabolic control of type 1 diabetes mellitus in childhood and adolescence in 18 countries. Hvidore Study Group on Childhood Diabetes. Diabet Med. 1998; 15(9): 752-9[DOI][PubMed]
  • 11. Arbit E, Kidron M. Oral insulin: the rationale for this approach and current developments. J Diabetes Sci Technol. 2009; 3(3): 562-7[PubMed]
  • 12. Lassmann-Vague V, Raccah D. Alternatives routes of insulin delivery. Diabetes Metab. 2006; 32(5 Pt 2): 513-22[PubMed]
  • 13. Aungst BJ, Rogers NJ, Shefter E. Comparison of nasal, rectal, buccal, sublingual and intramuscular insulin efficacy and the effects of a bile salt absorption promoter. J Pharmacol Exp Ther. 1988; 244(1): 23-7[PubMed]
  • 14. Sonaje K, Lin KJ, Wey SP, Lin CK, Yeh TH, Nguyen HN, et al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-responsive nanoparticles vs. subcutaneous injection. Biomaterials. 2010; 31(26): 6849-58[DOI][PubMed]
  • 15. Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabet Med. 2003; 20(11): 886-98[PubMed]
  • 16. Sonaje K, Chen YJ, Chen HL, Wey SP, Juang JH, Nguyen HN, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials. 2010; 31(12): 3384-94[DOI][PubMed]
  • 17. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012; 64(6): 557-70[DOI][PubMed]
  • 18. Plapied Laurence, Duhem Nicolas, des Rieux Anne, Préat Véronique. Fate of polymeric nanocarriers for oral drug delivery. Current opinion colloid In Sci. 2011; 16(3): 228-237
  • 19. Ramesan RM, Sharma CP. Challenges and advances in nanoparticle-based oral insulin delivery. Expert Rev Med Devices. 2009; 6(6): 665-76[DOI][PubMed]
  • 20. Kawashima Y, Yamamoto H, Takeuchi H, Kuno Y. Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharm Dev Technol. 2000; 5(1): 77-85[DOI][PubMed]
  • 21. Lamprecht Alf, Koenig Petra, Ubrich Nathalie, Maincent Philippe, Neumann Dirk. Low molecular weight heparin nanoparticles: mucoadhesion and behaviour in Caco-2 cells. Nanotechnology. 2006; 17(15): 3673-3680
  • 22. des Rieux A, Pourcelle V, Cani PD, Marchand-Brynaert J, Preat V. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv Drug Deliv Rev. 2013; 65(6): 833-44[DOI][PubMed]
  • 23. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007; 24(8): 1415-26[DOI][PubMed]
  • 24. Chalasani KB, Russell-Jones GJ, Yandrapu SK, Diwan PV, Jain SK. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release. 2007; 117(3): 421-9[DOI][PubMed]
  • 25. Marschutz MK, Caliceti P, Bernkop-Schnurch A. Design and in vivo evaluation of an oral delivery system for insulin. Pharm Res. 2000; 17(12): 1468-74[PubMed]
  • 26. Fasano A, Uzzau S. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest. 1997; 99(6): 1158-64[DOI][PubMed]
  • 27. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009; 26(5): 1025-58[DOI][PubMed]
  • 28. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007; 24(12): 2198-206[DOI][PubMed]
  • 29. Cui FD, Tao AJ, Cun DM, Zhang LQ, Shi K. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J Pharm Sci. 2007; 96(2): 421-7[DOI][PubMed]
  • 30. Sajeesh S, Sharma CP. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery. J Biomed Mater Res B Appl Biomater. 2006; 76(2): 298-305[DOI][PubMed]
  • 31. Jain Shelesh, Saraf Swarnlata. Influence of processing variables and in vitro characterization of glipizide loaded biodegradable nanoparticles. Diabetes Metab Syndrome: Clin Res Rev. 2009; 3(2): 113-117
  • 32. Verma RK, Garg S. Selection of excipients for extended release formulations of glipizide through drug-excipient compatibility testing. J Pharm Biomed Anal. 2005; 38(4): 633-44[DOI][PubMed]
  • 33. Nguyen HN, Wey SP, Juang JH, Sonaje K, Ho YC, Chuang EY, et al. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials. 2011; 32(10): 2673-82[DOI][PubMed]
  • 34. Woitiski CB, Neufeld RJ, Veiga F, Carvalho RA, Figueiredo IV. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur J Pharm Sci. 2010; 41(3-4): 556-63[DOI][PubMed]
  • 35. Rawat MK, Jain A, Singh S. In vivo and cytotoxicity evaluation of repaglinide-loaded binary solid lipid nanoparticles after oral administration to rats. J Pharm Sci. 2011; 100(6): 2406-17[DOI][PubMed]
  • 36. Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods. 2000; 44(1): 301-12[PubMed]
  • 37. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Bioph Res Co. 1991; 175(3): 880-885[DOI]
  • 38. Furuse M, Hirase T, Itoh M, Nagafuchi A. [The transport of vitamin B12 through polarized Occludin: a novel monolayers of Caco-2 cells– integral membrane protein localizing at tight junctions]. Cell Biol. 1990; 123: 1777-1788
  • 39. Gundogdu E, Mangas-Sanjuan V, Gonzalez-Alvarez I, Bermejo M, Karasulu E. In vitro-in situ permeability and dissolution of fexofenadine with kinetic modeling in the presence of sodium dodecyl sulfate. Eur J Drug Metab Pharmacokinet. 2012; 37(1): 65-75[DOI][PubMed]
  • 40. Peppas NA, Kavimandan NJ. Nanoscale analysis of protein and peptide absorption: insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles. Eur J Pharm Sci. 2006; 29(3-4): 183-97[DOI][PubMed]
  • 41. Foss AC, Peppas NA. Investigation of the cytotoxicity and insulin transport of acrylic-based copolymer protein delivery systems in contact with Caco-2 cultures. Eur J Pharm Biopharm. 2004; 57(3): 447-55[DOI][PubMed]
  • 42. Torres-Lugo M, Garcia M, Record R, Peppas NA. Physicochemical behavior and cytotoxic effects of p(methacrylic acid-g-ethylene glycol) nanospheres for oral delivery of proteins. J Control Release. 2002; 80(1-3): 197-205[PubMed]
  • 43. Kendzierski KS, Pansky B, Budd GC, Saffran M. Evidence for biosynthesis of preproinsulin in gut of rat. Endocrine. 2000; 13(3): 353-9[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments