International Journal of Endocrinology and Metabolism

Published by: Kowsar

Comparing the Effects of Ginger and Glibenclamide on Dihydroxybenzoic Metabolites Produced in Stz-Induced Diabetic Rats

Ramesh Ahmadi 1 , * , Saeede Pishghadam 2 , Fatemeh Mollaamine 3 and Mohammad Reza Zand Monfared 3
Authors Information
1 Department of Physiology, Islamic Azad University, Qom, IR Iran
2 Islamic Azad university, Qom, IR Iran
3 Department of chemistry, Islamic Azad university, Qom, IR Iran
Article information
  • International Journal of Endocrinology and Metabolism: October 01, 2013, 11 (4); e10266
  • Published Online: October 1, 2013
  • Article Type: Research Article
  • Received: March 16, 2013
  • Revised: April 30, 2013
  • Accepted: May 27, 2013
  • DOI: 10.5812/ijem.10266

To Cite: Ahmadi R, Pishghadam S, Mollaamine F, Zand Monfared M R. Comparing the Effects of Ginger and Glibenclamide on Dihydroxybenzoic Metabolites Produced in Stz-Induced Diabetic Rats, Int J Endocrinol Metab. 2013 ;11(4):e10266. doi: 10.5812/ijem.10266.

Abstract
Copyright: Copyright © 2013, International Journal of Endocrinology and Metabolism. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1.Background
2.Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Al Ghouleh I, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ, et al. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med. 2011; 51(7): 1271-88[DOI][PubMed]
  • 2. Del Vecchio L, Locatelli F, Carini M. What we know about oxidative stress in patients with chronic kidney disease on dialysis--clinical effects, potential treatment, and prevention. Semin Dial. 2011; 24(1): 56-64[DOI][PubMed]
  • 3. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002; 82(1): 47-95[DOI][PubMed]
  • 4. Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011; 50(5): 567-75[DOI][PubMed]
  • 5. Burk Raymond F, Ludden Thomas M. Exhaled alkanes as indices of in vivo lipid peroxidation. Biochemical Pharmacology. 1989; 38(7): 1029-1032[DOI]
  • 6. Wade Chris R, van Rij AndréM. In vivo lipid peroxidation in man as measured by the respiratory excretion of ethane, pentane, and other low-molecular-weight hydrocarbons. Anal Biochem. 1985; 150(1): 1-7[DOI]
  • 7. Wendel Albrecht. Measurement of in vivo lipid peroxidation and toxicological significance. Free Radical Biol Med. 1987; 3(5): 355-358[DOI]
  • 8. Moussa SA. Oxidative stress in diabetes mellitus. Romanian J Biophys. 2008; 18(3): 225-236
  • 9. Dewanjee Saikat, Bose Sekhar K, Sahu Ranabir, Mandal Subhash C. Antidiabetic effect of matured fruits of Diospyros peregrina in alloxan-induced diabetic rats. Int J Green Pharm. 2008; 2(2): 95
  • 10. Evans JL. Oxidative Stress and Stress-Activated Signaling Pathways: A Unifying Hypothesis of Type 2 Diabetes. Endocrine Reviews. 2002; 23(5): 599-622[DOI]
  • 11. Takasu N, Asawa T, Komiya I, Nagasawa Y, Yamada T. Alloxan-induced DNA strand breaks in pancreatic islets. Evidence for H2O2 as an intermediate. J Biol Chem. 1991; 266(4): 2112-4[PubMed]
  • 12. Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T. Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Diabetes. 1991; 40(9): 1141-5[PubMed]
  • 13. Ahmad FK, He Z, King GL. Molecular targets of diabetic cardiovascular complications. Curr Drug Targets. 2005; 6(4): 487-94[PubMed]
  • 14. Akhani SP, Vishwakarma SL, Goyal RK. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol. 2004; 56(1): 101-5[DOI][PubMed]
  • 15. Chen V, Ianuzzo CD. Dosage effect of streptozotocin on rat tissue enzyme activities and glycogen concentration. Can J Physiol Pharmacol. 1982; 60(10): 1251-6[PubMed]
  • 16. Huang CN, Horng JS, Yin MC. Antioxidative and antiglycative effects of six organosulfur compounds in low-density lipoprotein and plasma. J Agric Food Chem. 2004; 52(11): 3674-8[DOI][PubMed]
  • 17. S. Sharma S, K. Gupta Y. Reversal of cisplatin-induced delay in gastric emptying in rats by ginger (Zingiber officinale). J Ethnopharmacol. 1998; 62(1): 49-55[DOI]
  • 18. Young HY, Luo YL, Cheng HY, Hsieh WC, Liao JC, Peng WH. Analgesic and anti-inflammatory activities of [6]-gingerol. J Ethnopharmacol. 2005; 96(1-2): 207-10[DOI][PubMed]
  • 19. Katiyar SK, Agarwal R, Mukhtar H. Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinale rhizome. Cancer Res. 1996; 56(5): 1023-30[PubMed]
  • 20. Li WG, Zhang XY, Wu YJ, Tian X. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharmacol Sin. 2001; 22(12): 1117-20[PubMed]
  • 21. Zancan Kelly C, Marques Marcia OM, Petenate Ademir J, Meireles MAngela A. Extraction of ginger (Zingiber officinale Roscoe) oleoresin with CO2 and co-solvents: a study of the antioxidant action of the extracts. J Supercrit Fluids. 2002; 24(1): 57-76[DOI]
  • 22. Shanmugam KR, Mallikarjuna K, Kesireddy N, Sathyavelu Reddy K. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2011; 49(4): 893-7[DOI][PubMed]
  • 23. Ohkuwa T, Sato Y, Naoi M. Hydroxyl radical formation in diabetic rats induced by streptozotocin. Life Sci. 1995; 56(21): 1789-98[PubMed]
  • 24. Halliwell Barry, Kaur Harparkash, Ingelman-Sundberg Magnus. Hydroxylation of salicylate as an assay for hydroxyl radicals: A cautionary note. Free Radical Biol Med. 1991; 10(6): 439-441[DOI]
  • 25. Grootveld M, Halliwell B. Aromatic hydroxylation as a potential measure of hydroxyl-radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids. Biochem J. 1986; 237(2): 499-504[PubMed]
  • 26. Bhandari U, Kanojia R, Pillai KK. Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats. J Ethnopharmacol. 2005; 97(2): 227-30[DOI][PubMed]
  • 27. Mooradian AD. Antioxidants and diabetes. Nestle Nutr Workshop Ser Clin Perform Programme. 2006; 11: 107-22[DOI][PubMed]
  • 28. Sheikh-Ali M, Chehade JM, Mooradian AD. The antioxidant paradox in diabetes mellitus. Am J Ther. 2011; 18(3): 266-78[DOI][PubMed]
  • 29. Maritim AC, Sanders RA, Watkins JB, 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003; 17(1): 24-38[DOI][PubMed]
  • 30. Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation. 2003; 108(12): 1527-32[DOI][PubMed]
  • 31. Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech Ageing Dev. 2004; 125(10-11): 811-26[DOI][PubMed]
  • 32. Sen CK. Oxygen toxicity and antioxidants: state of the art. Indian J Physiol Pharmacol. 1995; 39(3): 177-96[PubMed]
  • 33. Kavalalı G, Tuncel H, Göksel S, Hatemi HH. Hypoglycemic activity of Urtica pilulifera in streptozotocin-diabetic rats. J Ethnopharmacol. 2003; 84(2-3): 241-245[DOI]
  • 34. Lipinski Boguslaw. Pathophysiology of oxidative stress in diabetes mellitus. J Diabet Complications. 2001; 15(4): 203-210[DOI]
  • 35. Obata Toshio, Yamanaka Yasumitsu. Glibenclamide, an antagonist of ATP sensitive K+ channels, blocks free radical generation in the rat myocardium. Neuroscience Letters. 1998; 257(1): 57-59[DOI]
  • 36. Rajkumar L, Srinivasan N, Balasubramanian K, Govindarajulu P. Increased degradation of dermal collagen in diabetic rats. Indian J Exp Biol. 1991; 29(11): 1081-3[PubMed]
  • 37. Huıe R.E, Neta P, Gilbert CA. Chemistry of reactive oxygenspecies: reactive oxygen species in biological systems. 1999; : 33–63