International Journal of Endocrinology and Metabolism

Published by: Kowsar

Comparing the Effects of Ginger and Glibenclamide on Dihydroxybenzoic Metabolites Produced in Stz-Induced Diabetic Rats

Ramesh Ahmadi 1 , * , Saeede Pishghadam 2 , Fatemeh Mollaamine 3 and Mohammad Reza Zand Monfared 3
Authors Information
1 Department of Physiology, Islamic Azad University, Qom, IR Iran
2 Islamic Azad university, Qom, IR Iran
3 Department of chemistry, Islamic Azad university, Qom, IR Iran
Article information
  • International Journal of Endocrinology and Metabolism: October 01, 2013, 11 (4); e10266
  • Published Online: October 1, 2013
  • Article Type: Research Article
  • Received: March 16, 2013
  • Revised: April 30, 2013
  • Accepted: May 27, 2013
  • DOI: 10.5812/ijem.10266

To Cite: Ahmadi R, Pishghadam S, Mollaamine F, Zand Monfared M R. Comparing the Effects of Ginger and Glibenclamide on Dihydroxybenzoic Metabolites Produced in Stz-Induced Diabetic Rats, Int J Endocrinol Metab. 2013 ; 11(4):e10266. doi: 10.5812/ijem.10266.

Copyright © 2013, Research Institute For Endocrine Sciences and Iran Endocrine Society. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
3. Materials and Methods
4. Results
5. Discussion
  • 1. Al Ghouleh I, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ, et al. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med. 2011; 51(7): 1271-88[DOI][PubMed]
  • 2. Del Vecchio L, Locatelli F, Carini M. What we know about oxidative stress in patients with chronic kidney disease on dialysis--clinical effects, potential treatment, and prevention. Semin Dial. 2011; 24(1): 56-64[DOI][PubMed]
  • 3. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002; 82(1): 47-95[DOI][PubMed]
  • 4. Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011; 50(5): 567-75[DOI][PubMed]
  • 5. Burk Raymond F, Ludden Thomas M. Exhaled alkanes as indices of in vivo lipid peroxidation. Biochemical Pharmacology. 1989; 38(7): 1029-1032[DOI]
  • 6. Wade Chris R, van Rij AndréM. In vivo lipid peroxidation in man as measured by the respiratory excretion of ethane, pentane, and other low-molecular-weight hydrocarbons. Anal Biochem. 1985; 150(1): 1-7[DOI]
  • 7. Wendel Albrecht. Measurement of in vivo lipid peroxidation and toxicological significance. Free Radical Biol Med. 1987; 3(5): 355-358[DOI]
  • 8. Moussa SA. Oxidative stress in diabetes mellitus. Romanian J Biophys. 2008; 18(3): 225-236
  • 9. Dewanjee Saikat, Bose Sekhar K, Sahu Ranabir, Mandal Subhash C. Antidiabetic effect of matured fruits of Diospyros peregrina in alloxan-induced diabetic rats. Int J Green Pharm. 2008; 2(2): 95
  • 10. Evans JL. Oxidative Stress and Stress-Activated Signaling Pathways: A Unifying Hypothesis of Type 2 Diabetes. Endocrine Reviews. 2002; 23(5): 599-622[DOI]
  • 11. Takasu N, Asawa T, Komiya I, Nagasawa Y, Yamada T. Alloxan-induced DNA strand breaks in pancreatic islets. Evidence for H2O2 as an intermediate. J Biol Chem. 1991; 266(4): 2112-4[PubMed]
  • 12. Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T. Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Diabetes. 1991; 40(9): 1141-5[PubMed]
  • 13. Ahmad FK, He Z, King GL. Molecular targets of diabetic cardiovascular complications. Curr Drug Targets. 2005; 6(4): 487-94[PubMed]
  • 14. Akhani SP, Vishwakarma SL, Goyal RK. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol. 2004; 56(1): 101-5[DOI][PubMed]
  • 15. Chen V, Ianuzzo CD. Dosage effect of streptozotocin on rat tissue enzyme activities and glycogen concentration. Can J Physiol Pharmacol. 1982; 60(10): 1251-6[PubMed]
  • 16. Huang CN, Horng JS, Yin MC. Antioxidative and antiglycative effects of six organosulfur compounds in low-density lipoprotein and plasma. J Agric Food Chem. 2004; 52(11): 3674-8[DOI][PubMed]
  • 17. S. Sharma S, K. Gupta Y. Reversal of cisplatin-induced delay in gastric emptying in rats by ginger (Zingiber officinale). J Ethnopharmacol. 1998; 62(1): 49-55[DOI]
  • 18. Young HY, Luo YL, Cheng HY, Hsieh WC, Liao JC, Peng WH. Analgesic and anti-inflammatory activities of [6]-gingerol. J Ethnopharmacol. 2005; 96(1-2): 207-10[DOI][PubMed]
  • 19. Katiyar SK, Agarwal R, Mukhtar H. Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinale rhizome. Cancer Res. 1996; 56(5): 1023-30[PubMed]
  • 20. Li WG, Zhang XY, Wu YJ, Tian X. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharmacol Sin. 2001; 22(12): 1117-20[PubMed]
  • 21. Zancan Kelly C, Marques Marcia OM, Petenate Ademir J, Meireles MAngela A. Extraction of ginger (Zingiber officinale Roscoe) oleoresin with CO2 and co-solvents: a study of the antioxidant action of the extracts. J Supercrit Fluids. 2002; 24(1): 57-76[DOI]
  • 22. Shanmugam KR, Mallikarjuna K, Kesireddy N, Sathyavelu Reddy K. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2011; 49(4): 893-7[DOI][PubMed]
  • 23. Ohkuwa T, Sato Y, Naoi M. Hydroxyl radical formation in diabetic rats induced by streptozotocin. Life Sci. 1995; 56(21): 1789-98[PubMed]
  • 24. Halliwell Barry, Kaur Harparkash, Ingelman-Sundberg Magnus. Hydroxylation of salicylate as an assay for hydroxyl radicals: A cautionary note. Free Radical Biol Med. 1991; 10(6): 439-441[DOI]
  • 25. Grootveld M, Halliwell B. Aromatic hydroxylation as a potential measure of hydroxyl-radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids. Biochem J. 1986; 237(2): 499-504[PubMed]
  • 26. Bhandari U, Kanojia R, Pillai KK. Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats. J Ethnopharmacol. 2005; 97(2): 227-30[DOI][PubMed]
  • 27. Mooradian AD. Antioxidants and diabetes. Nestle Nutr Workshop Ser Clin Perform Programme. 2006; 11: 107-22[DOI][PubMed]
  • 28. Sheikh-Ali M, Chehade JM, Mooradian AD. The antioxidant paradox in diabetes mellitus. Am J Ther. 2011; 18(3): 266-78[DOI][PubMed]
  • 29. Maritim AC, Sanders RA, Watkins JB, 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003; 17(1): 24-38[DOI][PubMed]
  • 30. Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation. 2003; 108(12): 1527-32[DOI][PubMed]
  • 31. Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech Ageing Dev. 2004; 125(10-11): 811-26[DOI][PubMed]
  • 32. Sen CK. Oxygen toxicity and antioxidants: state of the art. Indian J Physiol Pharmacol. 1995; 39(3): 177-96[PubMed]
  • 33. Kavalalı G, Tuncel H, Göksel S, Hatemi HH. Hypoglycemic activity of Urtica pilulifera in streptozotocin-diabetic rats. J Ethnopharmacol. 2003; 84(2-3): 241-245[DOI]
  • 34. Lipinski Boguslaw. Pathophysiology of oxidative stress in diabetes mellitus. J Diabet Complications. 2001; 15(4): 203-210[DOI]
  • 35. Obata Toshio, Yamanaka Yasumitsu. Glibenclamide, an antagonist of ATP sensitive K+ channels, blocks free radical generation in the rat myocardium. Neuroscience Letters. 1998; 257(1): 57-59[DOI]
  • 36. Rajkumar L, Srinivasan N, Balasubramanian K, Govindarajulu P. Increased degradation of dermal collagen in diabetic rats. Indian J Exp Biol. 1991; 29(11): 1081-3[PubMed]
  • 37. Huıe R.E, Neta P, Gilbert CA. Chemistry of reactive oxygenspecies: reactive oxygen species in biological systems. 1999; : 33–63
Readers' Comments