International Journal of Endocrinology and Metabolism

Published by: Kowsar

Resveratrol-Dependent Down-regulation of Receptor for Advanced Glycation End-products and Oxidative Stress in Kidney of Rats With Diabetes

Heresh Moridi 1 , Jamshid Karimi 1 , * , Nasrin Sheikh 1 , Mohammad Taghi Goodarzi 2 , Massoud Saidijam 2 , Reza Yadegarazari 3 , Mohammad Khazaei 1 , Iraj Khodadadi 1 , Heidar Tavilani 1 , Hossein Piri 4 , Soheila Asadi 1 , Sadegh Zarei 5 and Azam Rezaei 1
Authors Information
1 Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
2 Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
3 Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
4 Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, IR Iran
5 Department of Biochemistry, School of Medicine, Yazd University of Medical Sciences, Yazd, IR Iran
Article information
  • International Journal of Endocrinology and Metabolism: April 01, 2015, 13 (2); e23542
  • Published Online: April 20, 2015
  • Article Type: Research Article
  • Received: September 11, 2014
  • Revised: October 30, 2014
  • Accepted: January 13, 2015
  • DOI: 10.5812/ijem.23542

To Cite: Moridi H, Karimi J, Sheikh N, Goodarzi M T, Saidijam M, et al. Resveratrol-Dependent Down-regulation of Receptor for Advanced Glycation End-products and Oxidative Stress in Kidney of Rats With Diabetes, Int J Endocrinol Metab. 2015 ;13(2):e23542. doi: 10.5812/ijem.23542.

Abstract
Copyright © 2015, Research Institute For Endocrine Sciences and Iran Endocrine Society. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
References
  • 1. 2014;
  • 2. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013; 93(1): 137-88[DOI][PubMed]
  • 3. Ha H, Hwang IA, Park JH, Lee HB. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract. 2008; 82 Suppl 1-5[DOI][PubMed]
  • 4. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001; 44(2): 129-46[DOI][PubMed]
  • 5. Stern DM, Yan SD, Yan SF, Schmidt AM. Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev. 2002; 1(1): 1-15[PubMed]
  • 6. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 2005; 83(11): 876-86[DOI][PubMed]
  • 7. Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia. 2009; 52(11): 2251-63[DOI][PubMed]
  • 8. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2009; 32(1): 193-203[DOI][PubMed]
  • 9. Pinent M, Blay M, Blade MC, Salvado MJ, Arola L, Ardevol A. Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology. 2004; 145(11): 4985-90[DOI][PubMed]
  • 10. Vallianou NG, Evangelopoulos A, Kazazis C. Resveratrol and diabetes. Rev Diabet Stud. 2013; 10(4): 236-42[DOI][PubMed]
  • 11. Elbe H, Vardi N, Esrefoglu M, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum Exp Toxicol. 2015; 34(1): 100-13[DOI][PubMed]
  • 12. Xu F, Wang Y, Cui W, Yuan H, Sun J, Wu M, et al. Resveratrol Prevention of Diabetic Nephropathy Is Associated with the Suppression of Renal Inflammation and Mesangial Cell Proliferation: Possible Roles of Akt/NF-kappaB Pathway. Int J Endocrinol. 2014; 2014: 289327[DOI][PubMed]
  • 13. Ji H, Wu L, Ma X, Ma X, Qin G. The effect of resveratrol on the expression of AdipoR1 in kidneys of diabetic nephropathy. Mol Biol Rep. 2014; 41(4): 2151-9[DOI][PubMed]
  • 14. Wen D, Huang X, Zhang M, Zhang L, Chen J, Gu Y, et al. Resveratrol attenuates diabetic nephropathy via modulating angiogenesis. PLoS One. 2013; 8(12)[DOI][PubMed]
  • 15. Jiang B, Guo L, Li BY, Zhen JH, Song J, Peng T, et al. Resveratrol attenuates early diabetic nephropathy by down-regulating glutathione s-transferases Mu in diabetic rats. J Med Food. 2013; 16(6): 481-6[DOI][PubMed]
  • 16. Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes. 1998; 47(2): 224-9[PubMed]
  • 17. Katsuki A, Sumida Y, Gabazza EC, Murashima S, Furuta M, Araki-Sasaki R, et al. Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. Diabetes Care. 2001; 24(2): 362-5[PubMed]
  • 18. Mukherjee S, Dudley JI, Das DK. Dose-dependency of resveratrol in providing health benefits. Dose Response. 2010; 8(4): 478-500[DOI][PubMed]
  • 19. Fleming TH, Theilen TM, Masania J, Wunderle M, Karimi J, Vittas S, et al. Aging-dependent reduction in glyoxalase 1 delays wound healing. Gerontology. 2013; 59(5): 427-37[DOI][PubMed]
  • 20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-54[PubMed]
  • 21. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996; 239(1): 70-6[DOI][PubMed]
  • 22. Yagi K. Assay for blood plasma or serum. Meth Enzymol. 1984; 105: 328-31[DOI]
  • 23. Kalousova M, Skrha J, Zima T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol Res. 2002; 51(6): 597-604[PubMed]
  • 24. Palsamy P, Subramanian S. Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin-nicotinamide induced experimental diabetic rats. Biomed Pharmacother. 2008; 62(9): 598-605[DOI][PubMed]
  • 25. Su HC, Hung LM, Chen JK. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab. 2006; 290(6)-46[DOI][PubMed]
  • 26. Wang Q, Sun X, Li X, Dong X, Li P, Zhao L. Resveratrol attenuates intermittent hypoxia-induced insulin resistance in rats: involvement of Sirtuin 1 and the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT pathway. Mol Med Rep. 2015; 11(1): 151-8[DOI][PubMed]
  • 27. Chen WP, Chi TC, Chuang LM, Su MJ. Resveratrol enhances insulin secretion by blocking K(ATP) and K(V) channels of beta cells. Eur J Pharmacol. 2007; 568(1-3): 269-77[DOI][PubMed]
  • 28. Palsamy P, Subramanian S. Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Chem Biol Interact. 2009; 179(2-3): 356-62[DOI][PubMed]
  • 29. Rouse M, Younes A, Egan JM. Resveratrol and curcumin enhance pancreatic beta-cell function by inhibiting phosphodiesterase activity. J Endocrinol. 2014; 223(2): 107-17[DOI][PubMed]
  • 30. Szkudelska K, Szkudelski T. Resveratrol, obesity and diabetes. Eur J Pharmacol. 2010; 635(1-3): 1-8[DOI][PubMed]
  • 31. Jing YH, Chen KH, Yang SH, Kuo PC, Chen JK. Resveratrol ameliorates vasculopathy in STZ-induced diabetic rats: role of AGE-RAGE signalling. Diabetes Metab Res Rev. 2010; 26(3): 212-22[DOI][PubMed]
  • 32. Chen KH, Cheng ML, Jing YH, Chiu DT, Shiao MS, Chen JK. Resveratrol ameliorates metabolic disorders and muscle wasting in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab. 2011; 301(5)-63[DOI][PubMed]
  • 33. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A. 2000; 97(22): 12222-6[DOI][PubMed]
  • 34. Wu L, Zhang Y, Ma X, Zhang N, Qin G. The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats. Mol Biol Rep. 2012; 39(9): 9085-93[DOI][PubMed]
  • 35. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1): 44-84[DOI][PubMed]
  • 36. Pangeni R, Sahni JK, Ali J, Sharma S, Baboota S. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv. 2014; 11(8): 1285-98[DOI][PubMed]
  • 37. Leonard SS, Xia C, Jiang BH, Stinefelt B, Klandorf H, Harris GK, et al. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun. 2003; 309(4): 1017-26[PubMed]
  • 38. Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta. 2011; 1812(7): 719-31[DOI][PubMed]
  • 39. Khamneh S, Ghadiri SF, Afshar F. Long-term Resveratrol Administration Reduces Renal Oxidative Stress and Apoptosis Rate In Experimental Model of Type 2 Diabetes. 2012; 9(4): 2997-3001
  • 40. Prasad C, Imrhan V, Marotta F, Juma S, Vijayagopal P. Lifestyle and Advanced Glycation End Products (AGEs) Burden: Its Relevance to Healthy Aging. Aging Dis. 2014; 5(3): 212-7[DOI][PubMed]
  • 41. Bierhaus A, Humpert PM, Stern DM, Arnold B, Nawroth PP. Advanced glycation end product receptor-mediated cellular dysfunction. Ann N Y Acad Sci. 2005; 1043: 676-80[DOI][PubMed]
  • 42. Farmer DG, Kennedy S. RAGE, vascular tone and vascular disease. Pharmacol Ther. 2009; 124(2): 185-94[DOI][PubMed]
  • 43. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001; 280(5)-94[PubMed]
  • 44. Karimi J, Goodarzi MT, Tavilani H, Khodadadi I, Amiri I. Increased receptor for advanced glycation end products in spermatozoa of diabetic men and its association with sperm nuclear DNA fragmentation. Andrologia. 2012; 44 Suppl 1: 280-6[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments