International Journal of Endocrinology and Metabolism

Published by: Kowsar

An Application of Association Rule Mining to Extract Risk Pattern for Type 2 Diabetes Using Tehran Lipid and Glucose Study Database

Azra Ramezankhani 1 , Omid Pournik 2 , Jamal Shahrabi 3 , Fereidoun Azizi 4 and Farzad Hadaegh 1 , *
Authors Information
1 Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
2 Department of Community Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, IR Iran
3 Department of Industrial Engineering, Amirkabir University of Technology, Tehran, IR Iran
4 Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
Article information
  • International Journal of Endocrinology and Metabolism: April 01, 2015, 13 (2); e25389
  • Published Online: April 30, 2015
  • Article Type: Research Article
  • Received: November 16, 2014
  • Revised: December 17, 2014
  • Accepted: December 27, 2014
  • DOI: 10.5812/ijem.25389

To Cite: Ramezankhani A, Pournik O, Shahrabi J, Azizi F, Hadaegh F. An Application of Association Rule Mining to Extract Risk Pattern for Type 2 Diabetes Using Tehran Lipid and Glucose Study Database, Int J Endocrinol Metab. 2015 ; 13(2):e25389. doi: 10.5812/ijem.25389.

Copyright © 2015, Research Institute For Endocrine Sciences and Iran Endocrine Society. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Patients and Methods
4. Results
5. Discussion
  • 1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010; 87(1): 4-14[DOI][PubMed]
  • 2. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011; 94(3): 311-21[DOI][PubMed]
  • 3. Emerging Risk Factors C, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010; 375(9733): 2215-22[DOI][PubMed]
  • 4. Booth GL, Kapral MK, Fung K, Tu JV. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet. 2006; 368(9529): 29-36[DOI][PubMed]
  • 5. Diabetes atlas. 2006;
  • 6. Abbasi A, Peelen LM, Corpeleijn E, van der Schouw YT, Stolk RP, Spijkerman AM, et al. Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ. 2012; 345[DOI][PubMed]
  • 7. Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. BMJ. 2011; 343[DOI][PubMed]
  • 8. Uusitupa M, Tuomilehto J, Puska P. Are we really active in the prevention of obesity and type 2 diabetes at the community level? Nutr Metab Cardiovasc Dis. 2011; 21(5): 380-9[DOI][PubMed]
  • 9. U.S. Department of Health and Human Services . National Diabetes Information Clearinghouse (NDIC) National Diabetes Statistics. 2011;
  • 10. Koh HC, Tan G. Data mining applications in healthcare. J Healthc Inf Manag. 2011; 19(2): 65
  • 11. Francisci D, Brisson L, Collard M. A scalar evolutionnary approach to rule extraction. 2003;
  • 12. Mao R, Yin Y, Pei P. Data Mining and Knowledge Discovery. 2004;
  • 13. Fayyad U, Piatetsky SG, Smyth P. From data mining to knowledge discovery in databases. AI magazine. 1996; 17(3): 37
  • 14. Mining constrained association rules to predict heart disease. 2013 IEEE 13th International Conference on Data Mining. : 433
  • 15. Mining association rules between sets of items in large databases. ACM SIGMOD Record. : 207-16
  • 16. Fast algorithms for mining association rules. Proc. 20th int. conf. very large data bases, VLDB. : 487-99
  • 17. Ramezankhani A, Pournik O, Shahrabi J, Khalili D, Azizi F, Hadaegh F. Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study. Diabetes Res Clin Pract. 2014; 105(3): 391-8[DOI][PubMed]
  • 18. Mining a clinical data warehouse to discover disease-finding associations using co-occurrence statistics. AMIA Annual Symposium Proceedings. : 106
  • 19. Wang C, Guo XJ, Xu JF, Wu C, Sun YL, Ye XF, et al. Exploration of the association rules mining technique for the signal detection of adverse drug events in spontaneous reporting systems. PLoS One. 2012; 7(7)[DOI][PubMed]
  • 20. Mullins IM, Siadaty MS, Lyman J, Scully K, Garrett CT, Miller WG, et al. Data mining and clinical data repositories: Insights from a 667,000 patient data set. Comput Biol Med. 2006; 36(12): 1351-77[DOI][PubMed]
  • 21. Nahar J, Imam T, Tickle KS, Chen YPP. Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst Appl. 2013; 40(4): 1086-93[DOI]
  • 22. Simon GJ, Schrom J, Castro MR, Li PW, Caraballo PJ. Survival association rule mining towards type 2 diabetes risk assessment. AMIA Annu Symp Proc. 2013; 2013: 1293-302[PubMed]
  • 23. Kim HS, Shin AM, Kim MK, Kim YN. Comorbidity study on type 2 diabetes mellitus using data mining. Korean J Intern Med. 2012; 27(2): 197-202[DOI][PubMed]
  • 24. Azizi F, Ghanbarian A, Momenan AA, Hadaegh F, Mirmiran P, Hedayati M, et al. Prevention of non-communicable disease in a population in nutrition transition: Tehran Lipid and Glucose Study phase II. Trials. 2009; 10: 5[DOI][PubMed]
  • 25. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 1997; 20(7): 1183-97[PubMed]
  • 26. Azizi F, Rahmani M, Emami H, Mirmiran P, Hajipour R, Madjid M, et al. Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase 1). Soz Praventivmed. 2002; 47(6): 408-26[PubMed]
  • 27. Harati H, Hadaegh F, Saadat N, Azizi F. Population-based incidence of Type 2 diabetes and its associated risk factors: results from a six-year cohort study in Iran. BMC Public Health. 2009; 9: 186[DOI][PubMed]
  • 28. Hadaegh F, Bozorgmanesh MR, Ghasemi A, Harati H, Saadat N, Azizi F. High prevalence of undiagnosed diabetes and abnormal glucose tolerance in the Iranian urban population: Tehran Lipid and Glucose Study. BMC Public Health. 2008; 8: 176[DOI][PubMed]
  • 29. National Kidney F. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002; 39(2 Suppl 1)-266[PubMed]
  • 30. Hadaegh F, Hatami M, Tohidi M, Sarbakhsh P, Saadat N, Azizi F. Lipid ratios and appropriate cut off values for prediction of diabetes: a cohort of Iranian men and women. Lipids Health Dis. 2010; 9: 85[DOI][PubMed]
  • 31. Azizi F, Khalili D, Aghajani H, Esteghamati A, Hosseinpanah F, Delavari A, et al. Appropriate waist circumference cut-off points among Iranian adults: the first report of the Iranian National Committee of Obesity. Arch Iran Med. 2010; 13(3): 243-4[PubMed]
  • 32. Global database on Body Mass Index: BMI Classification. 2006;
  • 33. Han J, Kamber. M. , Pei J. Data mining: concepts and techniques. 2006;
  • 34. Ordonez C, Ezquerra N, Santana CA. Constraining and summarizing association rules in medical data. Knowl Inf Syst. 2006; 9(3): 1-2[DOI]
  • 35. Schrom JR, Caraballo PJ, Castro MR, Simon GJ. Quantifying the effect of statin use in pre-diabetic phenotypes discovered through association rule mining. AMIA Annu Symp Proc. 2013; 2013: 1249-57[PubMed]
  • 36. Kwasnicka H, Switalski K. Discovery of association rules from medical data-classical and evolutionary approaches. Annales UMCS Sectio AI Informatica. 2006; 4(1): 204-17
  • 37. Hahsler M, Grun B, Hornik K. Introduction to arules–mining association rules and frequent item sets. SIGKDD Explor. 2007;
  • 38. Ordonez C, Zhao K. Evaluating association rules and decision trees to predict multiple target attributes. Intell Data Anal. 2011; 15(2): 173-92
  • 39. Interesting measures for mining association rules. Multitopic Conference, 2004. Proceedings of INMIC 2004. 8th International. : 641-4
  • 40. Jahangiri Noudeh Y, Hadaegh F, Vatankhah N, Momenan AA, Saadat N, Khalili D, et al. Wrist circumference as a novel predictor of diabetes and prediabetes: results of cross-sectional and 8.8-year follow-up studies. J Clin Endocrinol Metab. 2013; 98(2): 777-84[DOI][PubMed]
  • 41. Haffner SM. Abdominal obesity, insulin resistance, and cardiovascular risk in pre-diabetes and type 2 diabetes. Eur Heart J Suppl. 2006; 8-5
  • 42. Cheng CW, Chanani N, Venugopalan J, Maher K, Wang MD. icuARM-An ICU Clinical Decision Support System Using Association Rule Mining. Trans Eng Health Med. 2013; 1: 4400110
  • 43. Muhlenbach F, Rakotomalala R. 2005; 1: 397-402
  • 44. Palizgir M, Bakhtiari M, Esteghamati A. Association of depression and anxiety with diabetes mellitus type 2 concerning some sociological factors. Iran Red Crescent Med J. 2013; 15(8): 644-8[DOI][PubMed]
  • 45. Ghasemi A, Zahediasl S. Potential therapeutic effects of nitrate/nitrite and type 2 diabetes mellitus. Int J Endocrinol Metab. 2013; 11(2): 63-4[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments