International Journal of Endocrinology and Metabolism

Published by: Kowsar

Transforming Growth Factor β1 (TGF-β1) in the Sera of Postmenopausal Osteoporotic Females

Aazam Faraji 1 , Shabnam Abtahi 2 , Abbas Ghaderi 2 and Alamtaj Samsami Dehaghani 1 , *
Authors Information
1 Department of Obstetrics and Gynecology, School of Medicine, Shiraz, Iran
2 Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
Article information
  • International Journal of Endocrinology and Metabolism: October 01, 2016, 14 (4); e36511
  • Published Online: October 22, 2016
  • Article Type: Research Article
  • Received: January 23, 2016
  • Revised: September 26, 2016
  • Accepted: October 16, 2016
  • DOI: 10.5812/ijem.36511

To Cite: Faraji A, Abtahi S, Ghaderi A, Samsami Dehaghani A. Transforming Growth Factor β1 (TGF-β1) in the Sera of Postmenopausal Osteoporotic Females, Int J Endocrinol Metab. 2016 ; 14(4):e36511. doi: 10.5812/ijem.36511.

Copyright © 2016, Research Institute For Endocrine Sciences and Iran Endocrine Society. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Sun J, Zhang C, Xu L, Yang M, Yang H. The transforming growth factor-beta1 (TGF-beta1) gene polymorphisms (TGF-beta1 T869C and TGF-beta1 T29C) and susceptibility to postmenopausal osteoporosis: a meta-analysis. Medicine (Baltimore). 2015; 94(4): 461[DOI][PubMed]
  • 2. Mirza F, Canalis E. Management of endocrine disease: Secondary osteoporosis: pathophysiology and management. Eur J Endocrinol. 2015; 173(3): 131-51[DOI][PubMed]
  • 3. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012; 8(2): 272-88[DOI][PubMed]
  • 4. Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. J Clin Invest. 2014; 124(2): 466-72[DOI][PubMed]
  • 5. Estai MA, Suhaimi F, Das S, Shuid AN, Mohamed Z, Soelaiman IN. Expression of TGF-beta1 in the blood during fracture repair in an estrogen-deficient rat model. Clinics (Sao Paulo). 2011; 66(12): 2113-9[PubMed]
  • 6. Poniatowski LA, Wojdasiewicz P, Gasik R, Szukiewicz D. Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm. 2015; 2015: 137823[DOI][PubMed]
  • 7. Kasagi S, Chen W. TGF-beta1 on osteoimmunology and the bone component cells. Cell Biosci. 2013; 3(1): 4[DOI][PubMed]
  • 8. Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res. 1998; 13(5): 793-802[DOI][PubMed]
  • 9. Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K. Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J. 2004; 23(3): 552-63[DOI][PubMed]
  • 10. Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Gallea S, et al. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone. 2001; 29(4): 323-30[PubMed]
  • 11. Murakami T, Yamamoto M, Ono K, Nishikawa M, Nagata N, Motoyoshi K, et al. Transforming growth factor-beta1 increases mRNA levels of osteoclastogenesis inhibitory factor in osteoblastic/stromal cells and inhibits the survival of murine osteoclast-like cells. Biochem Biophys Res Commun. 1998; 252(3): 747-52[DOI][PubMed]
  • 12. Pilkington MF, Sims SM, Dixon SJ. Transforming growth factor-beta induces osteoclast ruffling and chemotaxis: potential role in osteoclast recruitment. J Bone Miner Res. 2001; 16(7): 1237-47[DOI][PubMed]
  • 13. Ota K, Quint P, Weivoda MM, Ruan M, Pederson L, Westendorf JJ, et al. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone. 2013; 57(1): 68-75[DOI][PubMed]
  • 14. Karst M, Gorny G, Galvin RJ, Oursler MJ. Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-beta regulation of osteoclast differentiation. J Cell Physiol. 2004; 200(1): 99-106[DOI][PubMed]
  • 15. Akinci B, Bayraktar F, Saklamaz A, Demir T, Yener S, Comlekci A, et al. Low transforming growth factor-beta1 serum levels in idiopathic male osteoporosis. J Endocrinol Invest. 2007; 30(5): 350-5[PubMed]
  • 16. Kim CH, Kim YH, Kim YK, Kang BS, Lee TK, Moon SH, et al. IL-1beta induces and TGF-beta reduces vitamin D3-induced bone resorption in mouse calvarial bone cells. Immunol Invest. 2003; 32(3): 171-86[PubMed]
  • 17. Georgescu C, Seck T, Diel I, Minne H, Duncea I, Pfeilschifter J. Bone matrix insulin-like growth factor (IGF)-I, IGF-II and transforming growth factor (TGF)-beta1 levels in men and postmenopausal women with osteoporosis: lack of association with circulating growth factors and bone mineral density. Rev Med Chir Soc Med Nat Iasi. 2004; 108(2): 281-6[PubMed]
  • 18. Horwood NJ, Elliott J, Martin TJ, Gillespie MT. IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol. 2001; 166(8): 4915-21[PubMed]
  • 19. Yamada N, Niwa S, Tsujimura T, Iwasaki T, Sugihara A, Futani H, et al. Interleukin-18 and interleukin-12 synergistically inhibit osteoclastic bone-resorbing activity. Bone. 2002; 30(6): 901-8[PubMed]
  • 20. Morita Y, Kitaura H, Yoshimatsu M, Fujimura Y, Kohara H, Eguchi T, et al. IL-18 inhibits TNF-alpha-induced osteoclastogenesis possibly via a T cell-independent mechanism in synergy with IL-12 in vivo. Calcif Tissue Int. 2010; 86(3): 242-8[DOI][PubMed]
  • 21. Dai SM, Nishioka K, Yudoh K. Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 beta and tumour necrosis factor alpha. Ann Rheum Dis. 2004; 63(11): 1379-86[DOI][PubMed]
  • 22. WHO scientific group on the assessment of osteoporosis at primary health care level . 2004;
  • 23. Cheng Q, Tang W, Sheu TJ, Du Y, Gan J, Li H, et al. Circulating TGF-beta1 levels are negatively correlated with sclerostin levels in early postmenopausal women. Clin Chim Acta. 2016; 455: 87-92[DOI][PubMed]
  • 24. Ota K, Quint P, Ruan M, Pederson L, Westendorf JJ, Khosla S, et al. TGF-beta induces Wnt10b in osteoclasts from female mice to enhance coupling to osteoblasts. Endocrinology. 2013; 154(10): 3745-52[DOI][PubMed]
  • 25. Charles JF, Nakamura MC. Bone and the innate immune system. Curr Osteoporos Rep. 2014; 12(1): 1-8[DOI][PubMed]
  • 26. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000; 15(1): 2-12[DOI][PubMed]
  • 27. McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. 2009; 7(4): 134-9[PubMed]
  • 28. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med. 1996; 2(10): 1132-6[PubMed]
  • 29. Balooch G, Balooch M, Nalla RK, Schilling S, Filvaroff EH, Marshall GW, et al. TGF-beta regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci U S A. 2005; 102(52): 18813-8[DOI][PubMed]
  • 30. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013; 19(6): 704-12[DOI][PubMed]
  • 31. Whyte MP, Totty WG, Novack DV, Zhang X, Wenkert D, Mumm S. Camurati-Engelmann disease: unique variant featuring a novel mutation in TGFbeta1 encoding transforming growth factor beta 1 and a missense change in TNFSF11 encoding RANK ligand. J Bone Miner Res. 2011; 26(5): 920-33[DOI][PubMed]
  • 32. Bondestam J, Mayranpaa MK, Ikegawa S, Marttinen E, Kroger H, Makitie O. Bone biopsy and densitometry findings in a child with Camurati-Engelmann disease. Clin Rheumatol. 2007; 26(10): 1773-7[DOI][PubMed]
  • 33. Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 2008; 7(3): 335-43[DOI][PubMed]
  • 34. Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer. 2009; 9(2): 81-94[DOI][PubMed]
  • 35. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010; 31(3): 266-300[DOI][PubMed]
  • 36. Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007; 282(37): 27285-97[DOI][PubMed]
  • 37. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009; 15(7): 757-65[DOI][PubMed]
  • 38. Maugeri D, Mamazza C, Lo Giudice F, Puglisi N, Muscoso EG, Rizzotto M, et al. Interleukin-18 (IL-18) and matrix metalloproteinase-9 (MMP-9) in post-menopausal osteoporosis. Arch Gerontol Geriatr. 2005; 40(3): 299-305[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments