International Journal of Endocrinology and Metabolism

Published by: Kowsar

World Bank Income Group, Health Expenditure or Cardiometabolic Risk Factors? A Further Explanation of the Wide Gap in Cardiometabolic Mortality Between Worldwide Countries: An Ecological Study

Mojtaba Lotfaliany 1 , 2 , Samaneh Akbarpour 2 , Neda Zafari 2 , Mohammad Ali Mansournia 3 , Samaneh Asgari 2 , Fereidoun Azizi 4 , Farzad Hadaegh 2 and Davood Khalili 2 , 5 , *
Authors Information
1 School of Population and Global Health, University of Melbourne, Victoria, Australia
2 Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
4 Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5 Department of Biostatistics and Epidemiology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • International Journal of Endocrinology and Metabolism: July 2018, 16 (3); e59946
  • Published Online: July 10, 2018
  • Article Type: Research Article
  • Received: September 2, 2017
  • Revised: February 24, 2018
  • Accepted: June 30, 2018
  • DOI: 10.5812/ijem.59946

To Cite: Lotfaliany M, Akbarpour S, Zafari N, Mansournia M A, Asgari S, et al. World Bank Income Group, Health Expenditure or Cardiometabolic Risk Factors? A Further Explanation of the Wide Gap in Cardiometabolic Mortality Between Worldwide Countries: An Ecological Study, Int J Endocrinol Metab. 2018 ; 16(3):e59946. doi: 10.5812/ijem.59946.

Abstract
Copyright © 2018, International Journal of Endocrinology and Metabolism. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnote
References
  • 1. Alwan A. Global status report on noncommunicable disaeses 2010: World Health Organization. 2011. 3 p.
  • 2. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311-21. doi: 10.1016/j.diabres.2011.10.029. [PubMed: 22079683].
  • 3. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197-223. doi: 10.1016/S0140-6736(12)61689-4. [PubMed: 23245608].
  • 4. IDF Diabetes Atlas. Brussels, Belgium: International Diabetes Federation; 2014. Available from: http://www.diabetesatlas.org.
  • 5. Fact sheet cardiovascular disease:. World Health Organization; 2013. Available from: http://www.who.int/countries/en/.
  • 6. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11). e442. doi: 10.1371/journal.pmed.0030442. [PubMed: 17132052]. [PubMed Central: PMC1664601].
  • 7. Ramachandran A, Snehalatha C, Yamuna A, Mary S, Ping Z. Cost-effectiveness of the interventions in the primary prevention of diabetes among Asian Indians: within-trial results of the Indian Diabetes Prevention Programme (IDPP). Diabetes Care. 2007;30(10):2548-52. doi: 10.2337/dc07-0150. [PubMed: 17670917].
  • 8. Diabetes Prevention Program Research G. Within-trial cost-effectiveness of lifestyle intervention or metformin for the primary prevention of type 2 diabetes. Diabetes Care. 2003;26(9):2518-23. doi: 10.2337/diacare.26.9.2518. [PubMed: 12941712]. [PubMed Central: PMC1360736].
  • 9. Bandura A. Health promotion by social cognitive means. Health Educ Behav. 2004;31(2):143-64. doi: 10.1177/1090198104263660. [PubMed: 15090118].
  • 10. Carver CS, Scheier MF. Self-regulation of action and affect. Handbook of self-regulation: Research, theory, and applications. 2004. p. 13-39.
  • 11. Herman WH, Hoerger TJ, Brandle M, Hicks K, Sorensen S, Zhang P, et al. The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med. 2005;142(5):323-32. doi: 10.7326/0003-4819-142-5-200503010-00007. [PubMed: 15738451]. [PubMed Central: PMC2701392].
  • 12. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, et al. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med. 2015;12(10). e1001885. doi: 10.1371/journal.pmed.1001885. [PubMed: 26440803]. [PubMed Central: PMC4595218].
  • 13. Singh R. The Adverse Effects of Wealth on Cardiovascular Health: A Scientific Statement of the International College of Cardiology. Cardiol Angiol. 2013;1(1):9-22. doi: 10.9734/ca/2013/3375.
  • 14. Sidney S, Rosamond WD, Howard VJ, Luepker RV, National Forum for Heart D, Stroke P. The "heart disease and stroke statistics--2013 update" and the need for a national cardiovascular surveillance system. Circulation. 2013;127(1):21-3. doi: 10.1161/CIRCULATIONAHA.112.155911. [PubMed: 23239838].
  • 15. Singh RB, Anjum B, Takahashi T, Martirosyan DM, Pella D, De Meester F. Poverty is not the absolute cause of deaths due to non-communicable diseases. World Heart J. 2012;4(2/3):221.
  • 16. Woolf SH, Aron L. US Health in International Perspective:: Shorter Lives, Poorer Health. National Academies Press; 2013.
  • 17. Sposato LA, Saposnik G. Gross domestic product and health expenditure associated with incidence, 30-day fatality, and age at stroke onset: a systematic review. Stroke. 2012;43(1):170-7. doi: 10.1161/STROKEAHA.111.632158. [PubMed: 22033985].
  • 18. Gwatkin DR, Wagstaff A, Yazbeck AS. Reaching the poor with health, nutrition, and population services: what works, what doesn't, and why. World Bank Publications; 2005. doi: 10.1596/978-0-8213-5961-7.
  • 19. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937-52. doi: 10.1016/S0140-6736(04)17018-9. [PubMed: 15364185].
  • 20. Hunink MG, Goldman L, Tosteson AN, Mittleman MA, Goldman PA, Williams LW, et al. The recent decline in mortality from coronary heart disease, 1980-1990. The effect of secular trends in risk factors and treatment. JAMA. 1997;277(7):535-42. [PubMed: 9032159].
  • 21. Tunstall-Pedoe H, Kuulasmaa K, Mahonen M, Tolonen H, Ruokokoski E, Amouyel P. Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease. Lancet. 1999;353(9164):1547-57. doi: 10.1016/S0140-6736(99)04021-0. [PubMed: 10334252].
  • 22. Osmani S, Sen A. The hidden penalties of gender inequality: fetal origins of ill-health. Econ Hum Biol. 2003;1(1):105-21. doi: 10.1016/S1570-677X(02)00006-0. [PubMed: 15463967].
  • 23. Dollar D, Gatti R. Gender inequality, income, and growth: are good times good for women?: Development Research Group. Washington, DC: The World Bank; 1999.
  • 24. Sen A. The many faces of gender inequality. New republic; 2001. p. 35-9.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments