International Journal of Endocrinology and Metabolism

Published by: Neoscriber Demo Publisher
Crossmark

Gestational Diabetes Mellitus Regulatory Network Identifies hsa-miR-145-5p and hsa-miR-875-5p as Potential Biomarkers

Mona Zamanian Azodi ORCID 1 , * , Mostafa Rezaei-Tavirani ORCID 2 , ** , Majid Rezaei-Tavirani 3 and Reza Mahmoud Robati ORCID 4
Authors Information
1 Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
4 Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Corresponding Authors:
Article information
  • International Journal of Endocrinology and Metabolism: 17 (3); e86640
  • Published Online: May 14, 2019
  • Article Type: Research Article
  • Received: November 21, 2018
  • Revised: March 14, 2019
  • Accepted: April 17, 2019
  • DOI: 10.5812/ijem.86640

To Cite: Zamanian Azodi M, Rezaei-Tavirani M , Rezaei-Tavirani M, Robati R M . Gestational Diabetes Mellitus Regulatory Network Identifies hsa-miR-145-5p and hsa-miR-875-5p as Potential Biomarkers, Int J Endocrinol Metab. Online ahead of Print ; 17(3):e86640. doi: 10.5812/ijem.86640.

Abstract
Copyright © 2019, International Journal of Endocrinology and Metabolism. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Footnotes
References
  • 1. Guo Y, Han Z, Guo L, Liu Y, Li G, Li H, et al. Identification of urinary biomarkers for the prediction of gestational diabetes mellitus in early second trimester of young gravidae based on iTRAQ quantitative proteomics. Endocr J. 2018;65(7):727-35. doi: 10.1507/endocrj.EJ17-0471. [PubMed: 29760307].
  • 2. Leitner M, Fragner L, Danner S, Holeschofsky N, Leitner K, Tischler S, et al. Combined metabolomic analysis of plasma and urine reveals AHBA, tryptophan and serotonin metabolism as potential risk factors in gestational diabetes mellitus (GDM). Front Mol Biosci. 2017;4:84. doi: 10.3389/fmolb.2017.00084. [PubMed: 29312952]. [PubMed Central: PMC5742855].
  • 3. Sebastiani G, Guarino E, Grieco GE, Formichi C, Delli Poggi C, Ceccarelli E, et al. Circulating microRNA (miRNA) expression profiling in plasma of patients with gestational diabetes mellitus reveals upregulation of miRNA miR-330-3p. Front Endocrinol (Lausanne). 2017;8:345. doi: 10.3389/fendo.2017.00345. [PubMed: 29312141]. [PubMed Central: PMC5732927].
  • 4. Roverso M, Brioschi M, Banfi C, Visentin S, Burlina S, Seraglia R, et al. A preliminary study on human placental tissue impaired by gestational diabetes: A comparison of gel-based versus gel-free proteomics approaches. Eur J Mass Spectrom (Chichester). 2016;22(2):71-82. doi: 10.1255/ejms.1412. [PubMed: 27419900].
  • 5. Atan NAD, Koushki M, Ahmadi NA, Rezaei-Tavirani M. Metabolomics-based studies in the field of Leishmania/leishmaniasis. Alexandria J Med. 2018;54(4):383-90. doi: 10.1016/j.ajme.2018.06.002.
  • 6. Mansouri V, Rezaei Tavirani S, Zadeh-Esmaeel MM, Rostami-Nejad M, Rezaei-Tavirani M. Comparative study of gastric cancer and chronic gastritis via network analysis. Gastroenterol Hepatol Bed Bench. 2018;11(4):343-51. [PubMed: 30425814]. [PubMed Central: PMC6204252].
  • 7. Kentsis A, Lin YY, Kurek K, Calicchio M, Wang YY, Monigatti F, et al. Discovery and validation of urine markers of acute pediatric appendicitis using high-accuracy mass spectrometry. Ann Emerg Med. 2010;55(1):62-70 e4. doi: 10.1016/j.annemergmed.2009.04.020. [PubMed: 19556024]. [PubMed Central: PMC4422167].
  • 8. Enquobahrie DA, Williams MA, Qiu C, Meller M, Sorensen TK. Global placental gene expression in gestational diabetes mellitus. Am J Obstet Gynecol. 2009;200(2):206 e1-13. doi: 10.1016/j.ajog.2008.08.022. [PubMed: 18845290].
  • 9. Babashah S, Sadeghizadeh M, Tavirani MR, Farivar S, Soleimani M. Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell Oncol (Dordr). 2012;35(5):317-34. doi: 10.1007/s13402-012-0095-3. [PubMed: 22956261].
  • 10. Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R. Diabetes mellitus, a microRNA-related disease? Transl Res. 2011;157(4):253-64. doi: 10.1016/j.trsl.2011.01.009. [PubMed: 21420036].
  • 11. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991-5. doi: 10.1093/nar/gks1193. [PubMed: 23193258]. [PubMed Central: PMC3531084].
  • 12. Asadzadeh-Aghdaei H, Zamanian-Azodi M, Rezaei-Tavirani M, Zadeh-Esmaeel MM, Shalmani HM. Investigation of health benefits of cocoa in human colorectal cancer cell line, HT-29 through interactome analysis. Gastroenterol Hepatol Bed Bench. 2019;12(1):67-73.
  • 13. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447-52. doi: 10.1093/nar/gku1003. [PubMed: 25352553]. [PubMed Central: PMC4383874].
  • 14. Kohl M, Wiese S, Warscheid B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291-303. doi: 10.1007/978-1-60761-987-1_18. [PubMed: 21063955].
  • 15. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, et al. A travel guide to Cytoscape plugins. Nat Methods. 2012;9(11):1069-76. doi: 10.1038/nmeth.2212. [PubMed: 23132118]. [PubMed Central: PMC3649846].
  • 16. Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661-3. doi: 10.1093/bioinformatics/btt019. [PubMed: 23325622]. [PubMed Central: PMC3582273].
  • 17. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-3. doi: 10.1093/bioinformatics/btp101. [PubMed: 19237447]. [PubMed Central: PMC2666812].
  • 18. Zamanian Azodi M, Rezaei-Tavirani M, Rostami Nejad M, Rezaei-Tavirani M. Human prolactinoma: A view of protein-protein interaction pattern. Int J Endocrinol Metab. 2018;16(4). e67332. doi: 10.5812/ijem.67332. [PubMed: 30464775]. [PubMed Central: PMC6216114].
  • 19. Fan L, Yu X, Huang Z, Zheng S, Zhou Y, Lv H, et al. Analysis of microarray-identified genes and MicroRNAs associated with idiopathic pulmonary fibrosis. Mediators Inflamm. 2017;2017:1804240. doi: 10.1155/2017/1804240. [PubMed: 28588348]. [PubMed Central: PMC5446886].
  • 20. Srivastava A, Goldberger H, Dimtchev A, Ramalinga M, Chijioke J, Marian C, et al. MicroRNA profiling in prostate cancer--the diagnostic potential of urinary miR-205 and miR-214. PLoS One. 2013;8(10). e76994. doi: 10.1371/journal.pone.0076994. [PubMed: 24167554]. [PubMed Central: PMC3805541].
  • 21. Contino G, Vaughan TL, Whiteman D, Fitzgerald RC. The evolving genomic landscape of Barrett's esophagus and esophageal adenocarcinoma. Gastroenterology. 2017;153(3):657-673 e1. doi: 10.1053/j.gastro.2017.07.007. [PubMed: 28716721]. [PubMed Central: PMC6025803].
  • 22. Kantharidis P, Wang B, Carew RM, Lan HY. Diabetes complications: The microRNA perspective. Diabetes. 2011;60(7):1832-7. doi: 10.2337/db11-0082. [PubMed: 21709278]. [PubMed Central: PMC3121430].
  • 23. Snoek BC, Verlaat W, Babion I, Novianti PW, van de Wiel MA, Wilting SM, et al. Genome-wide microRNA analysis of HPV-positive self-samples yields novel triage markers for early detection of cervical cancer. Int J Cancer. 2019;144(2):372-9. doi: 10.1002/ijc.31855. [PubMed: 30192375].
  • 24. Selvamani A, Lewis D, Lewis B, Spohn MJ, Sohrabji F. Abstract WP196: MicroRNA and IGF-1 as predictive biomarkers for stroke outcomes. Stroke. 2019;50(Suppl_1). doi: 10.1161/str.50.suppl_1.WP196.
  • 25. Kuzmicki M, Telejko B, Szamatowicz J, Zonenberg A, Nikolajuk A, Kretowski A, et al. High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecol Endocrinol. 2009;25(4):258-63. doi: 10.1080/09513590802653825. [PubMed: 19408175].
  • 26. Hassiakos D, Eleftheriades M, Papastefanou I, Lambrinoudaki I, Kappou D, Lavranos D, et al. Increased maternal serum interleukin-6 concentrations at 11 to 14 weeks of gestation in low risk pregnancies complicated with gestational diabetes mellitus: Development of a prediction model. Horm Metab Res. 2016;48(1):35-41. doi: 10.1055/s-0034-1395659. [PubMed: 25565094].
  • 27. Lencioni C, Resi V, Romero F, Lupi R, Volpe L, Bertolotto A, et al. Glucagon-like peptide-1 secretion in women with gestational diabetes mellitus during and after pregnancy. J Endocrinol Invest. 2011;34(9):e287-90. doi: 10.3275/7799. [PubMed: 21666414].
  • 28. Ley SH, Harris SB, Connelly PW, Mamakeesick M, Gittelsohn J, Wolever TM, et al. Association of apolipoprotein B with incident type 2 diabetes in an aboriginal Canadian population. Clin Chem. 2010;56(4):666-70. doi: 10.1373/clinchem.2009.136994. [PubMed: 20110448]. [PubMed Central: PMC5123873].
  • 29. Retnakaran R, Qi Y, Connelly PW, Sermer M, Hanley AJ, Zinman B. The graded relationship between glucose tolerance status in pregnancy and postpartum levels of low-density-lipoprotein cholesterol and apolipoprotein B in young women: Implications for future cardiovascular risk. J Clin Endocrinol Metab. 2010;95(9):4345-53. doi: 10.1210/jc.2010-0361. [PubMed: 20631030].
  • 30. Stehouwer CD, Gall MA, Twisk JW, Knudsen E, Emeis JJ, Parving HH. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: Progressive, interrelated, and independently associated with risk of death. Diabetes. 2002;51(4):1157-65. doi: 10.2337/diabetes.51.4.1157. [PubMed: 11916939].
  • 31. Pretorius E, Lipinski B, Bester J, Vermeulen N, Soma P. Albumin stabilizes fibrin fiber ultrastructure in low serum albumin type 2 diabetes. Ultrastruct Pathol. 2013;37(4):254-7. doi: 10.3109/01913123.2013.778929. [PubMed: 23672265].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments